BULUNAN SONUÇLAR...
Jeodezi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Jeodezi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
26 Nisan 2015 Pazar
3 Aralık 2014 Çarşamba
0 Yükseklik Sistemleri ve Jeoid Yüzeyinin Belirlenmesi
Tweet
c) Global Geoid Hesabı: Potansiyel katsayılarını ve küresel harmonik açılımı kullanalarak global geoid yüksekliklerini hesaplamak mümkündür. Global Geoid genelde geoidin uzun dalgaboylu bileşenlerini temsil etmekte olup kısa dalgaboylu (yani yerel geoid bileşenleri) bileşenler filtrelenmektedir. En son katsayılardan birisi olan OSU91B paketi kullanıldığında elde edilen geoid yükseklikleri mutlak olarak 2-3 metre civarında ve birkaç yüz km' ye kadar olan aralıklarda relatif olarak birkaç dm civarında bir duyarlığa sahip olduğu söylenebilir.
Yerin gravite alanı içerisinde, çekim potansiyeli ve merkezkaç potansiyelinin vektörel toplamı olan gerçek gravite potansiyeli eşit noktaların birleşmesiyle eş potansiyelli yüzeyler elde edilir. Fiziksel yeryüzünde her noktadan bir eş potansiyelli yüzey geçer. Bu yüzeyler yerin dışında analitik ve kapalı yüzeylerdir. Eş potansiyelli yüzeylerden ortalama okyanus yüzeyi ile çakışanına Jeoit adı verilir. Jeodezi bilim dalında yerin gerçek şekli olan jeoit yüzeyinin global veya yerel anlamda belirlenmesi büyük önem taşır. Elipsoid yüzeyinden elipsoid normali boyunca ölçü noktasına olan yüksekliklere elipsoid yükseklikleri (h) adı verilir. Elipsoid yükseklikleri GPS ile yüksek doğrulukta ve düşük maliyet ile pratik olarak belirlenebilmektedir. Fakat pratik jeodezide kullanılan jeoit yüzeyinden itibaren çekül eğrisi boyunca olan yükseklikler (ortometrik yükseklikler (H)) maliyeti yüksek ve zahmetli ölçümlerle belirlenmektedir. Bölgesel haritacılık çalışmalarının çoğu için, yerel jeoit yüzeyi yardımı ile ölçülen elipsoid yüksekliklerinden ortometrik yükseklikleri yeterli duyarlıklarda elde etmek mümkündür. Jeoit ve elipsoid yüzeyleri arasındaki elipsoid normali boyunca olan uzaklığa jeoit ondülasyonu denir. Yerel jeoit yüzey denkleminin belirlenmesinde jeodezik dayanak noktalarına ait jeoit ondülasyonları kullanılır. Yüzey denkleminin oluşturulmasında kullanılan enterpolasyon yöntemleri iki yükseklik sistemi arasındaki dönüşümün duyarlığını etkiler (Teke ve diğ., 2005).
8.1 Elipsoid Yüksekliği İle Ortometrik Yükseklik Arasındaki İlişki
Jeodezik amaçlı GPS gözlemlerinde, uydulara dayalı olarak ölçülen yükseklikler ve relatif yükseklik farkları elipsoide bağlı olarak elde edilen değerlerdir. Ancak pratik yükseklik olarak tanımlayabileceğimiz ortometrik yüksekliklerin bulunabilmesi için elipsoid yüzeyi ile fiziksel yeryüzü arasında bir geçiş yüzeyinin dolayısıyla jeoidin tanımlanması gerekmektedir. Bu durumda ise elipsoit yüksekliği ile ortometrik yükseklik arasındaki farkı tanımlayan ve jeoit yüksekliği denilen bir üçüncü yüksekliğin daha ifade edilmesi gerekmektedir. Burada bahsedilen elipsoid yüksekliği (h), ortometrik yükseklik (H) ve jeoit ondülasyonu ya da jeoit yüksekliği (N) arasında Şekil 7.1 deki bir ilişki vardır.
Şekil 8.1 Yeryüzü, jeoit ve elipsoid arasındaki ilişki |
Görüldüğü gibi ortometrik yüksekliklerin hesabı için jeoit ondülasyonunun bilinmesi gerekmektedir.
∆N geoid yükseklik farkının hesabı için 3 yaygın teknik kullanılmaktadır.
a) Gravimetrik Hesap: Yeterli sıklıkta gravite değeri varsa, geoid yükseklik farkını cm ' ler mertebesinde hesaplamak mümkündür.
b) Yerel Geoid Geçirme (Yüzey geçirme) : 5-10 km aralıklarla istasyonlarda GPS ölçüleri ve ortometrik yükseklikler mevcutsa, bu noktalarda önce geoid yüksekliklerini hesaplamak ve sonra da bu geoidden analitik bir yüzey geçirerek diğer GPS noktalarında geoid yüksekliklerini ve dolayısıyla ortometrik yükseklikleri hesaplamak mümkündür.
c) Global Geoid Hesabı: Potansiyel katsayılarını ve küresel harmonik açılımı kullanalarak global geoid yüksekliklerini hesaplamak mümkündür. Global Geoid genelde geoidin uzun dalgaboylu bileşenlerini temsil etmekte olup kısa dalgaboylu (yani yerel geoid bileşenleri) bileşenler filtrelenmektedir. En son katsayılardan birisi olan OSU91B paketi kullanıldığında elde edilen geoid yükseklikleri mutlak olarak 2-3 metre civarında ve birkaç yüz km' ye kadar olan aralıklarda relatif olarak birkaç dm civarında bir duyarlığa sahip olduğu söylenebilir.
8.2 Jeoit Ondülasyonlarının Belirlenmesinde Kullanılan Enterpolasyon Yöntemleri
Jeoit ondülasyonlarını belirleme teknikleri içerisinde en yaygın olarak kullanılanı, bölgede elipsoidal ve ortometrik yüksekliği bilinen ve bölgeyi en iyi temsil eden noktalardan yararlanarak, analitik bir yüzey geçirmektir. Yüzey geçirilmesi ile elde edilen matematiksel model, GPS ölçüsü yapılan noktalardaki jeoit ondülasyonlarının başka bir deyişle ortometrik yüksekliklerin belirlenmesinde kullanılır. Bu yöntem astrojeodezik yönteme benzer. Her iki yöntemde de en yüksek hassasiyet, jeoidin düzgün olduğu alanlarda bulunan birbirine çok yakın istasyonlar arasında yapılan uygulamalarda elde edilir. Belirli bir ortogonal koordinat sisteminde, uygun dağılımda x,y koordinatları bilinen herhangi bir noktadaki jeoit ondülasyonu hesaplanabilir. Problemin çözülmesinde farklı ve çok çeşitli enterpolasyon yöntemleri kullanılabilir. Bu yöntemlerin bir bölümünde dayanak noktalarındaki yükseklikler hatasız kabul edilir, bir kısmında belirli bir dengeleme ya da düzensiz hataların filtrelemesi yapılır. Duruma göre o bölge için seçilmiş olan enterpolasyon yöntemi ne kadar uygunsa, jeoit ondülasyonunun hesaplanan değeri ile gerçek değeri arasındaki fark o denli küçük olur. Matematiksel olarak E{ NHesap } =NGerçek olması istenir. Pratikte bunun gerçekleşmesi zordur. Enterpolasyon problemlerinin çözümünde, Noktasal enterpolasyon, Tüm bölgeyi kapsayan tek bir fonksiyonla enterpolasyon, Yerel olarak tanımlanmış parça parça fonksiyonlarla enterpolasyon olmak üzere üç yaklaşım vardır.
Noktasal enterpolasyonda noktayı çevreleyen tanımlı bir daire, kare veya elips içine düşen dayanak noktalarına göre çözüm üretilir.
Tüm bölgeyi kapsayan tek bir fonksiyonla enterpolasyonda, tüm dayanak noktaları bir fonksiyon içerisinde kullanılır.
Yerel olarak tanımlanmış parça parça enterpolasyonda ise, jeoit yüzeyi daha çok parçalara bölünmektedir. Bunun nedeni, jeoit yüzeyinin arazi yüzeyine bağlı olarak tüm alan içerisinde homojen bir yapı göstermemesinden kaynaklanır.
8.2.1 Ağırlıklı Aritmetik Ortalama İle Enterpolasyon
Noktasal enterpolasyon metotları arasında en yaygın ve en sık kullanılanıdır. Belli bir bölgede, jeoit ondülasyonu GPS/Nivelman ile belirlenmiş n sayıda dayanak noktası olduğunu varsayalım. Bu durumda diğer noktalardaki jeoit ondülasyonu;
eşitliği ile hesaplanır. Di; Jeoit ondülasyonu belirlenecek nokta ile i dayanak noktası arasındaki uzunluk, k ise tamsayıdır. Bu yöntemde akla gelebilecek ilk soru k nın seçimidir, k değeri büyüdükçe yeni noktadaki jeoit ondülasyonu, komşu noktaların jeoit ondülasyonundan daha fazla etkilenir. Başka bir deyişle, ağırlıklı aritmetik ortalama ile enterpolasyon, en yakın komşuluklu enterpolasyon problemine dönüşür. Ondülasyon değerlerinde ani değişimler söz konusu ise k nın etkisi daha fazladır.
8.2.2 Polinomlarla Enterpolasyon
Polinomlarla enterpolasyon tekniği yüzey modellemede en yaygın kullanılan tekniklerden biridir. Bu tekniğin amacı çalışılan bölgenin tek bir fonksiyonla ifade edilmesidir. Bu amaçla dayanak noktalarının xi, yi koordinatları ve Ni jeoit ondülasyonundan yararlanarak fonksiyon katsayıları belirlenir. Yüzey genellikle iki değişkenli yüksek dereceden polinomlarla tanımlanır.
Ortogonal polinomlarla enterpolasyonda;
Ortogonal olmayan polinomlarda ise enterpolasyon;
eşitliklerinden yararlanılır. Burada; aij: Polinomun bilinmeyen katsayıları x,y: Noktaların düzlem koordinatları n: Yüzeyin derecesidir (İnal ve diğ., 2002).
18 Kasım 2014 Salı
10 Eylül 2014 Çarşamba
0 GPS-Nivelman Yöntemi ile Jeoid Yüksekliği Belirleme
Tweet
Kaynak: Taktak F., Güllü M., Afyonkarahisar'da GPS gözlemleri ve nivalman ölçüleri yardımıyla yerel jeoid profilinin çıkarılması, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 2006, 7, 166-181.
Jeodezik amaçlı GPS gözlemlerinde, uydulara dayalı olarak
ölçülen yükseklikler ve rölatif yükseklik farkları Dünya Jeodezik Sistemi-1984
(WGS84) elipsoidine dayalı olarak elde edilen değerlerdir.
Ancak, pratik yüksekliklerin bulunabilmesi için elipsoid yüzeyi ile fiziksel
yeryüzü arasında bir geçiş
yüzeyinin dolayısıyla jeoidin tanımlanması gerekmektedir. Bu şekilde elipsoid yüksekliği, ortometrik yükseklik ve jeoid yüksekliği arasında,
h=H+N
biçiminde bir ilişki
mevcuttur.
Burada,
h :
Elipsoidal yükseklik,
H :
Ortometrik yükseklik,
N : Jeoid
yüksekliği,
olarak tanımlanmaktadır (Bkz. Şekil).
Ortometrik, elipsoidal ve jeoid yükseklik farkları arasındaki ilişki |
0 Jeoid Belirlemede Kullanılan Veriler ve Yöntemler
Tweet
Jeoid, yoğunluğun ve kütle dağılımının bir fonksiyonu olup, jeoid belirlemede kullanılan veriler, yeryuvarı içerisindeki kütle yoğunluğunun dağılımını yansıtmaktadır. Jeoid yüzeyi, yeryüzünün genelinde ya da bir bölümünde değişik ölçme teknikleri ile elde edilen veriler kullanılarak belirlenebilir. Jeoidin, nokta profil ya da bir yüzey şeklinde belirlenmesi mümkündür. Genel olarak jeoid belirlemede kullanılan veri kaynakları ile, gözlem büyüklükleri Çizelge 1’deki gibi sıralanabilir.
Jeoidi belirlemek için yukarıda sözü edilen yöntemlerden en uygunu, eldeki verilerin çeşitliliğine ve istenen presizyona göre belirlenir. Örneğin, GPS ve nivelman ölçmelerinin var olduğu bir yerde GPS/Nivelman yöntemi uygundur. Öte yandan, gravite değerleri elde edilmişse ve presizyonlu bir jeoid belirlenmesi isteniyorsa kombine yöntem seçilebilir.
Jeoidi belirlemek için yukarıda sözü edilen yöntemlerden en uygunu, eldeki verilerin çeşitliliğine ve istenen presizyona göre belirlenir. Örneğin, GPS ve nivelman ölçmelerinin var olduğu bir yerde GPS/Nivelman yöntemi uygundur. Öte yandan, gravite değerleri elde edilmişse ve presizyonlu bir jeoid belirlenmesi isteniyorsa kombine yöntem seçilebilir.
Kaynak: Taktak F., Güllü M., Afyonkarahisar'da GPS gözlemleri ve nivalman ölçüleri yardımıyla yerel jeoid profilinin çıkarılması, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 2006, 7, 166-181.
0 Jeodezide Yükseklik Sistemleri
Tweet
Jeodezi de yükseklik sistemleri genel olarak teorik
(bilimsel) ve pratik yükseklikler olarak tanımlanmaktadır. Jeoid, teorik bir
kavram olup, yeryüzü noktalarına göre konumu bilinmediğinden değişik varsayımların kabulü ile bilimsel yükseklikler
tanımlanmıştır. Bu yükseklikler
jeopotansiyel, dinamik, normal, ortometrik ve elipsoidal yüksekliklerdir.
•
Jeopotansiyel
yükseklik, yeryüzündeki bir noktadan
geçen nivo yüzeyinin Wp potansiyeli ile jeoidin W0
potansiyeli arasındaki kilogal * metre biriminde verilen potansiyel farktır.
•
Dinamik
yükseklik, jeoid ile nivo yüzeyleri arasındaki jeopotansiyel farkın,
gravite ivmesine bölünmesi ile elde edilen yüksekliktir.
• Normal
yükseklik, yeryuvarının gerçek gravite potansiyelinin, normal gravite
potansiyeline eşit olduğu (W=U), yerin gerçek gravitesinin, normal graviteye eşit (g=γ) ve
dolayısıyla bozucu potansiyelinin olmadığı (T=0)
varsayımlarına göre hesaplanmış
yüksekliktir.
•
Ortometrik
yükseklik, fiziksel yeryüzündeki bir noktanın ortometrik yüksekliği, noktadan geçen çekül eğrisi boyunca jeoide olan normalin uzunluğudur (Bkz. Şekil).
•
Elipsoidal
yükseklik, Elipsoidal yükseklik, jeoid yüzeyinden olan ortometrik
yükseklikten jeoid yükseklikliği kadar
farklıdır (Bkz. Şekil).
Elipsoidal (h) ve
ortometrik (H) yükseklik
|
Kaynak: Taktak F., Güllü M., Afyonkarahisar'da GPS gözlemleri ve nivalman ölçüleri yardımıyla yerel jeoid profilinin çıkarılması, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 2006, 7, 166-181.
26 Ağustos 2014 Salı
0 Jeodezi Tanımı ve Kapsamı
Tweet
Yeryüzünün tamamının veya büyük bir kısmının ölçülmesi, yeryuvarının biçiminin ve büyüklüğünün saptanması işlemine Jeodezi denir. Yunanca kökünden gelen bu kelime (Jeo=yer, dezi=bölme) yerin bölünmesi anlamına gelmektedir. ARİSTO zamanında yeryuvarının ölçümü için Geometri kelimesi kullanılmaktaydı. Alman bilim adamı F.R.HELMERT 1880'de Jeodeziyi "Yeryüzünün ölçümü ve projeksiyonu" olarak tanımlamıştır. Aynı yıllarda yaşayan H.BRUNS bu tanıma yerin gravite alanının da ölçülmesini ekleyerek Fiziksel Jeodezinin de Jeodezinin ayrılmaz bir bütünü olduğunu vurgulamıştır. Bütün bunları içeren bir tanıma da son yıllarda S.HEITZ "Jeodezi, yeryuvarına ilişkin gözlemlerin elde edilmesi ve bunların fiziksel modele dönüştürülmesidir" şeklinde tanımlamıştır.
IAG (Uluslararası Jeodezi Birliği) 1979 toplantısında jeodezi için "Jeodezi, üç boyutlu ve zaman değişkenli uzayda çekim alanı da kapsamda olmak koşulu ile, yerin ve diğer gök cisimlerinin temsil edilmesi ve ölçülmesi ile ilgilenen bir bilimdir" demiştir. Şu halde jeodezinin kapsamına ay ve diğer gezegenler de girmektedir. Sonuç olarak; yeryuvarının tamamının, kıtalarının, bir ülkenin veya büyük bir kısmının ölçümü işi Jeodezi veya daha doğrusu Yüksek Jeodezi konularına girmektedir.
Kaynak: Ölçme Bilgisi, Cilt I, İstanbul, 2003.
IAG (Uluslararası Jeodezi Birliği) 1979 toplantısında jeodezi için "Jeodezi, üç boyutlu ve zaman değişkenli uzayda çekim alanı da kapsamda olmak koşulu ile, yerin ve diğer gök cisimlerinin temsil edilmesi ve ölçülmesi ile ilgilenen bir bilimdir" demiştir. Şu halde jeodezinin kapsamına ay ve diğer gezegenler de girmektedir. Sonuç olarak; yeryuvarının tamamının, kıtalarının, bir ülkenin veya büyük bir kısmının ölçümü işi Jeodezi veya daha doğrusu Yüksek Jeodezi konularına girmektedir.
Kaynak: Ölçme Bilgisi, Cilt I, İstanbul, 2003.
22 Temmuz 2014 Salı
0 Jeoid Belirleme Yöntemleri
Tweet
EGM 96 ( Earth Geopotantial Model 1996 ) Modeli
1.1. Bölgesel Jeoid Belirleme Modelleri
Bölgesel jeoid modellerinin gravimetrik olarak hesaplanması işlemi Stokes integraline dayanır:
2.3. Kolokasyon ve İntegrasyon Metodlarının Kombinasyonu Modeli
Yükseklik yeryüzündeki geometrik cisimlerin üçüncü boyutudur. Bir noktanın yüksekliği, noktadan sıfır yükseltili başlangıç yüzeyine inilen dikin boyudur. Noktanın yüksekliğini saptayabilmek için ilk olarak başlangıç yüzeyinin tanımlanması ve buna dik doğruların belirlenmesi gerekir. Yeryüzü noktaları için en kolay belirlenebilen doğrultular çekül doğrultularıdır. Bunun için yükseklik belirlemede bu doğrultuların alınması en kolay yoldur. Bu doğrultulara dik sıfır yükseltili yüzey ise jeoid yüzeyidir. Jeoidin belirlenmesi de jeodezinin temel görevlerinden birisidir (Ayan,1978).
1970’li yıllardan başlayarak günümüze kadar hızlı bir gelişme gösteren GPS, jeodezik çalışmalarda çok uzun zamandan beri kullanılmakta olan klasik ölçme yöntemlerinden kaynaklanan problemlerin aşılmasında oldukça önemli rol oynamıştır. Bugün ulaştığı teknik imkânlarla GPS alıcısına sahip olan her kullanıcı gerektiğinde hassas bir şekilde, üç boyutlu olarak konum bilgilerini elde edebilmektedir.Yöntemin temel ilkesi, uzayda değişik yörüngelerde bulunan en az 4 uyduya mesafe ölçümü yaparak alıcının üç boyutlu koordinatlarının hesaplanmasıdır. Burada uydular, koordinatları bilinen noktalar olarak kabul edilirse, işlem en basit anlamda bir uzay geriden kestirme yöntemidir.
Uydu ile alıcı arasındaki uzaklık (jij), uydu koordinatları (xj, yj, zj), alıcı koordinatları (Xi, Yi, Zi) olarak alındığında;
şeklindedir. GPS verilerinin değerlendirilmesi ile elde edilen yükseklikler elipsoidal yüksekliklerdir. Bunun yanında genellikle pratik uygulamalarda elipsoidal yükseklik kullanılmaz, bunun yerine ortometrik yükseklik kullanılır. Bu yüzden GPS ile elde edilen elipsoidal yükseklikler ile ortometrik yükseklikler arasında ilişki kurulmalıdır. GPS ile koordinatlandırılmış üç boyutlu konum ağları geometrik bir sistem olmasına karşılık mevcut yükseklik ağları düşey boyutun jeopotansiyel ile ifade edildiği tek bileşenli fiziksel bir sistemdir. İki sistemi ilişkilendirmekteki asıl amaç, GPS ölçülerine göre daha yorucu olan ve zaman alan nivelman işlemini azaltarak GPS ile sorunu çözmektir. Bunun için dm’nin altında bir doğrulukla jeoidin belirlenmesi gerekir (Aksoy vd.,1998). Jeoid belirlenmiş ise elipsoidal yükseklik ( h ) ile ortometrik yükseklik ( H ) arasındaki ilişki,
H = h – N
şeklindedir. Bu eşitlikte N jeoid yüksekliğidir. GPS verilerinden yararlanarak yükseklik belirlemenin temelini veren bu eşitlik ile, N değeri bilinen ve h değeri GPS gözlemleriyle saptanmış olan noktanın ortometrik yüksekliği hesaplanabilir. Hesaplanacak ortometrik yüksekliğin doğruluğu, N değerinin ve GPS ile elde edilen elipsoidal yüksekliğin doğruluğuna bağlı olarak değişir.
JEOİD YÜKSEKLİĞİ BELİRLENMESİNDE KULLANILAN MATEMATİKSEL MODELLER
Jeoid ile elipsoid yüzeyi arasındaki uzaklığa jeoid ondülasyonu veya jeoid yüksekliği adı verilir. Yeryüzünü oluşturan tabakaların yoğunluklarının farklı olmasından dolayı jeoid düzensiz bir şekle sahiptir. Jeoid yüksekliği değerleri ortalama yer elipsoidine göre ± 100 m arasında değişir.
JEOİD YÜKSEKLİĞİ BELİRLENMESİNDE KULLANILAN MATEMATİKSEL MODELLER
Jeoid ile elipsoid yüzeyi arasındaki uzaklığa jeoid ondülasyonu veya jeoid yüksekliği adı verilir. Yeryüzünü oluşturan tabakaların yoğunluklarının farklı olmasından dolayı jeoid düzensiz bir şekle sahiptir. Jeoid yüksekliği değerleri ortalama yer elipsoidine göre ± 100 m arasında değişir.
Jeoid belirleme yöntemlerini jeoidin kapsadığı alana göre ve kullanılan verilere göre iki grupta incelemek mümkündür: Jeoidin kapsadığı alana göre global, bölgesel ve yerel jeoid belirleme söz konusudur. İkinci grupta yer alan veriler çekül sapmaları, nokta gravite ölçüleri, GPS/Nivelman, GPS/Astronomik gözlemleri ve uydu ile yersel verilerin kombinasyonudur.
1) Global Jeoid Belirleme Modelleri
Global jeoid modelleri, isminden de anlaşıldığı üzere tüm dünyaya ait gravite bilgilerinden faydalanarak oluşturulmuş bir modeldir. Her ulusun bir ya da birkaç istasyonu dünya çapındaki gravite baz istasyonları ağını. IGSN71 datumu, 1906’da yapılan sarkaç ölçüleri ile belirlenen Potsdam sisteminin yerini almış ve gravite ölçüleri için referans olarak kabul edilmiştir.
1) Global Jeoid Belirleme Modelleri
Global jeoid modelleri, isminden de anlaşıldığı üzere tüm dünyaya ait gravite bilgilerinden faydalanarak oluşturulmuş bir modeldir. Her ulusun bir ya da birkaç istasyonu dünya çapındaki gravite baz istasyonları ağını. IGSN71 datumu, 1906’da yapılan sarkaç ölçüleri ile belirlenen Potsdam sisteminin yerini almış ve gravite ölçüleri için referans olarak kabul edilmiştir.
R : Dünyanın yarıçapı
G : Ortalama gravite
Dg : Serbest hava gravite anomalisi
S (y ) : Stokes fonksiyonu
Stokes formülü , jeoidin dış tarafında kitle olmadığı ön kabulüne dayanır. Eğer herhangi bir fiziksel jeodezi problemi, potansiyel kuramının belirlediği anlamda bir sınır değeri problemi olarak ele alınmak istenirse, sınırlayan yüzeyin dışında kitle yoktur diyen bu kabul zorunludur. Bunun nedeni, potansiyel kuramının sınır değeri problemlerinin daima harmonik fonksiyonları içermesidir. Jeoidin dış tarafında kitleler varolduğundan Stokes integrali ya da ilgili formüllerin uygulanabilmesinden önce bu kitlelerin jeoidin içine götürülmesi ya da tümüyle ortadan kaldırılması zorunludur. Türlü gravite indirgemelerinin amacı budur.
Global jeoid modellerine örnek olarak potansiyel katsayılardan yararlanarak jeoid yüksekliği hesaplama ilkesine dayanan OSU91-A ve EGM 96 modelleri verilebilir.
OSU91-A ( Ohio State University Global Jeoid Model 91 A ) Modeli
1.1. Bölgesel Jeoid Belirleme Modelleri
Bölgesel jeoid modellerinin gravimetrik olarak hesaplanması işlemi Stokes integraline dayanır:
Gravimetrik yöntemler, bir sınır yüzey için verilen gravite anomalileriyle bu yüzeye bağlı jeoid yükseklikleri ya da yükseklik anomalileri arasındaki ilişkiyi tanımlayan jeodezik sınır değer probleminin çözümü temeline dayanır. Sınır değer probleminin çözümü Stokes entegrali ile sağlanır. Stokes entegrali,
- klasik
- hızlı Fourier
- vb. tekniklerle çözülebilir.
2.1. Klasik ve Hızlı Fourier Tekniği ile Stokes İntegrasyonu
Jeoid yüksekliğinin hassas bir şekilde belirlenebilmesi için; jeopotansiyel model (GM), ortalama serbest hava gravite anomalileri (DgFA) ve sayısal arazi modeli yükseklikleri (h) kombinasyonundan yararlanılır. Bu data tiplerinin kullanımıyla elde edilen eşitlikler şöyledir :
2.1. Klasik ve Hızlı Fourier Tekniği ile Stokes İntegrasyonu
Jeoid yüksekliğinin hassas bir şekilde belirlenebilmesi için; jeopotansiyel model (GM), ortalama serbest hava gravite anomalileri (DgFA)
N = NGM + NDg + Nh
Dg =
DgFA - DgGM - Dgh
Düzlem yaklaşımda E bir integrasyon alanı veortalama gravite olmak üzere jeoid yükseklikleri aşağıdaki eşitlik ile hesaplanır:
Yukarıdaki eşitliktedeğeri, data noktaları (x,y) ile hesaplanan noktalar (xp, yp) arasındaki uzunluktur. S Stokes operatörünü ifade eder.Küresel yaklaşımda ise bu değer,
eşitliği kullanılarak hesaplanır. R ortalama Dünya yarıçapını, S(y) Stokes fonksiyonunu, y küresel mesafeyi ifade eder.
2.2. En Küçük Karelerle Kolokasyon Yöntemi
2.2. En Küçük Karelerle Kolokasyon Yöntemi
N = N1 + N2 +N3
N1 : Gravite alanına ait toplam spektrumun uzun dalga boylu sinyalleri
N2 : Gravite alanına ait toplam spektrumun orta dalga boylu sinyalleri
N3 : Gravite alanına ait toplam spektrumun kısa dalga boylu sinyalleri
Benzer olarak jeoid yükseklikleri farkları ;
DN = DN1+DN2+DN3
şeklinde yazılabilir.
Jeoid yüksekliğine ait uzun dalga boylu sinyaller (N1) belirli bir dereceye kadar olan katsayıların oluşturduğu jeopotansiyel modelin sonlu küresel harmoniklerde kullanımı ile elde edilebilir (lmax).
Jeoid yüksekliğine ait uzun dalga boylu sinyaller (N1) belirli bir dereceye kadar olan katsayıların oluşturduğu jeopotansiyel modelin sonlu küresel harmoniklerde kullanımı ile elde edilebilir (lmax).
Bu eşitlikte ;
GM : Yer kitlesine ait sabit Newton çekim kuvveti
g : Normal gravite
DC, DS : Jeopotansiyel modelin küresel harmonik katsayıları
q, l : Kutup mesafesi ve jeosentrik boylam
Plm (.) : Legendre fonksiyonları
a : Elipsoidin yarı büyük ekseni
r : Yer vektörünün boyu
anlamındadır.2.3. Kolokasyon ve İntegrasyon Metodlarının Kombinasyonu Modeli
Bu metodda s= CSX Cxx-1x eşitliğinden hesaplanan nokta etrafındaki küçük bölgede NDg’nin tahmini için kullanılır ve ayrıca geri kalan bölgede küresel yaklaşımda Stokes eşitliğinden yararlanılır:
Burada:
S(y) : Stokes fonksiyonu
y : küresel mesafe
a : y’nin jeodezik azimutu
R: Dünya’nın ortalama yarıçapıdır.
3) Astrojeodezik Yöntem İle Jeoid Yüksekliği Belirleme
Fiziksel yeryüzündeki bir P noktasından geçen çekül eğrisi ile yine aynı noktadan geçen elipsoid normali e kadar birbirlerinden saparlar. Bu farka çekül sapması denir ve
3) Astrojeodezik Yöntem İle Jeoid Yüksekliği Belirleme
Fiziksel yeryüzündeki bir P noktasından geçen çekül eğrisi ile yine aynı noktadan geçen elipsoid normali e kadar birbirlerinden saparlar. Bu farka çekül sapması denir ve
e = xcosa + hsina
eşitliği ile ifade edilir.
a : Kesit boyunca azimut
x , h : Astrojeodezik çekül sapmasının Kuzey – Güney ve Doğu – Batı bileşenleridir.
Astrojeodezik jeoid belirleme yönteminde çekül sapması bileşenleri, aynı noktaya ait jeodezik ve astronomik koordinatların karşılaştırılması ile elde edilir. Bu işlemde j, l jeodezik enlem ve boylam; f, L astronomik enlem ve boylam olmak üzere şu eşitlikler kullanılır:
x= f - j
h= (L-l)
cosj
Başlangıç noktası A’da jeoid yüksekliği biliniyor ise (NA) AB profili boyunca N değeri
eşitliğiyle hesaplanır.
4) GPS/NİVELMAN Yöntemiyle Elde Edilen Verilerden Yararlanarak, Analitik Bir Yüzey Geçirerek Geometrik Olarak Jeoid Yüksekliği Belirleme
Elipsoidal yüksekliklerin ve ortometrik yüksekliklerin her ikisinin de bilindiği noktaların mevcut olduğu durumlarda, GPS/NİVELMAN jeoidi belirlenirken yükseklik eğrili haritaların yapımı için bu noktalardan bir yüzey geçirilir. Yüzey geçirilmesiyle elde edilen model, ara noktaların jeoid yüksekliklerinin belirlenmesinde de kullanılır. Ara noktaların elipsoidal yükseklikleri GPS ile bulunur. Modelle ortometrik yükseklik elde edilir. Bu işlem astrojeodezik yönteme benzer. Her iki yöntemde de gözlemden kaynaklanan hatalar dışında en yüksek hassasiyet, jeoidin düzgün olduğu alanda bulunan birbirine 3-5 km istasyonlar arasında yapılan uygulamalarda elde edilir.
4.1. Polinomlar İle Yüzey Oluşturma
4) GPS/NİVELMAN Yöntemiyle Elde Edilen Verilerden Yararlanarak, Analitik Bir Yüzey Geçirerek Geometrik Olarak Jeoid Yüksekliği Belirleme
Elipsoidal yüksekliklerin ve ortometrik yüksekliklerin her ikisinin de bilindiği noktaların mevcut olduğu durumlarda, GPS/NİVELMAN jeoidi belirlenirken yükseklik eğrili haritaların yapımı için bu noktalardan bir yüzey geçirilir. Yüzey geçirilmesiyle elde edilen model, ara noktaların jeoid yüksekliklerinin belirlenmesinde de kullanılır. Ara noktaların elipsoidal yükseklikleri GPS ile bulunur. Modelle ortometrik yükseklik elde edilir. Bu işlem astrojeodezik yönteme benzer. Her iki yöntemde de gözlemden kaynaklanan hatalar dışında en yüksek hassasiyet, jeoidin düzgün olduğu alanda bulunan birbirine 3-5 km istasyonlar arasında yapılan uygulamalarda elde edilir.
4.1. Polinomlar İle Yüzey Oluşturma
eşitliği genel yüzey eşitliğidir. n sayısı 1 ise geçirilen yüzey bi-lineer, 2 ise bi-quadratik ve 3 olduğunda bi-kübik spline adını almaktadır. Bi-lineer yüzeyde ortak nokta sayısı (elipsoit ve ortometrik yüksekliği belli) en az 4, bi-quadratik yüzeyde en az 9 ve bi-kübik spline yüzeyde en az 16 olmalıdır. Ortak nokta sayısının bu değerlerden fazla olması durumunda yüzeyi belirleyen parametreler en küçük kareler yöntemine göre dengeleme ile hesaplanır. Üstteki eşitlikteki ai değeri spline katsayısını, x ve y değerleri sözkonusu noktanın Gauss koordinatlarını ifade eder (İnal, 1996). Polinomun derecesi dayanak nokta sayısına bağlı olarak belirlenir. En yüksek dereceden başlayarak bulunan katsayıların istatik testlerle signifikant olup olmadıkları belirlenerek kesin sonuç bulunur. Derece önceden belirlenemez. Derece; nokta sayısı, doğruluk, jeoidin özelliğine bağlı olarak oluşur.
4.2. İnterpolasyon Yöntemleri
Arazi üzerinde dağılmış, koordinatları (x, y, z) bilinen noktalara “Dayanak Noktaları” adı verilir. Belirtilen arazinin bulunduğu koordinat sisteminin yatay düzleminde düzgün ve yeter sıklıkta bir ağ oluşturulur. Dayanak noktaları bu ağın içinde ve dışında dağılmış durumdadırlar. Daha sonra ağın köşe noktalarının yükseklikleri çeşitli interpolasyon yöntemlerinin herhangi birinden yararlanılarak hesaplanır. Böylelikle arazi sayısal olarak belirlenmiş olur.
4.2. İnterpolasyon Yöntemleri
Arazi üzerinde dağılmış, koordinatları (x, y, z) bilinen noktalara “Dayanak Noktaları” adı verilir. Belirtilen arazinin bulunduğu koordinat sisteminin yatay düzleminde düzgün ve yeter sıklıkta bir ağ oluşturulur. Dayanak noktaları bu ağın içinde ve dışında dağılmış durumdadırlar. Daha sonra ağın köşe noktalarının yükseklikleri çeşitli interpolasyon yöntemlerinin herhangi birinden yararlanılarak hesaplanır. Böylelikle arazi sayısal olarak belirlenmiş olur.
İnterpolasyon n boyutlu Pi noktalarındaki m boyutlu vektörleri kullanarak n boyutlu Pk noktalarındaki m boyutlu bilinmeyen vektörlerinin hesaplanması işlemidir. n boyutlu Pi
noktalarına dayanak uzayı adı verilir. Sayısal arazi modellerinin interpolasyonu probleminde dayanak uzayının iki boyutu (x, y), vektörlerin bir boyutu (z) vardır.
Uygulamada en küçük parçalardaki polinomlarla interpolasyon ve kayan yüzey yardımıyla interpolasyon yöntemleri kullanıldığından yalnızca bu iki interpolasyon yöntemi irdelenecektir.
4.2.1 En Küçük Parçalardaki Polinomlarla İnterpolasyon
noktalarına dayanak uzayı adı verilir. Sayısal arazi modellerinin interpolasyonu probleminde dayanak uzayının iki boyutu (x, y), vektörlerin bir boyutu (z) vardır.
Uygulamada en küçük parçalardaki polinomlarla interpolasyon ve kayan yüzey yardımıyla interpolasyon yöntemleri kullanıldığından yalnızca bu iki interpolasyon yöntemi irdelenecektir.
4.2.1 En Küçük Parçalardaki Polinomlarla İnterpolasyon
Bu yöntemin en genel karakteri, her bir yerel yüzeyin aynı anda hesaplanmasıdır. Dayanak noktaları düzlemi eşit kare veya dikdörtgen parçası üzerindeki yüzeyler tüm bölgede sürekli ve düzgün olacak biçimde düşük dereceden polinomlarla gösterilir.
Eşit kare parçalarındaki yerel polinomlar;
şeklindedir.
Her bir kare bölgesindeki yüzey üstteki eşitlik şeklindeki yüzey fonksiyonu ile gösterilir. Birim karelerin her noktasında yüksekliğe ek olarak y ve x eksenleri doğrultusundaki eğimler de hesaplandığından her bir kare bölgesi için 12 değer bulunmuş olur. Bu değerlerle 12 katsayılı,
Z=a00+a01y+a02y2+a03y3+a10x+a11xy+a12xy2+a13xy3+a20x2+a21x2y+a30x3+a31x3y
şeklinde bikübik bir polinom belirlenebilir. Bu polinom birim karenin köşe noktalarındaki yükseklikler veya eğimlerden hesaplandığından komşu karelerdeki polinomların fonksiyon değerleri sınırlar boyunca aynı olur.
4.2.2. Kayan Yüzey Yardımı İle İnterpolasyon
İstenilen bir noktanın yüksekliği çevresinde bulunan dayanak noktalarından hesaplanan bir yüzeyden elde edilir. Bu yüzeyin konum ve şekli, bir noktadan diğer bir komşu noktaya değiştiğinden “Kayan Yüzey” olarak tanımlanır. Koordinat sisteminin başlangıcı olarak yüksekliği hesaplanacak nokta alınırsa, bu yüzeye ait,
4.2.2. Kayan Yüzey Yardımı İle İnterpolasyon
İstenilen bir noktanın yüksekliği çevresinde bulunan dayanak noktalarından hesaplanan bir yüzeyden elde edilir. Bu yüzeyin konum ve şekli, bir noktadan diğer bir komşu noktaya değiştiğinden “Kayan Yüzey” olarak tanımlanır. Koordinat sisteminin başlangıcı olarak yüksekliği hesaplanacak nokta alınırsa, bu yüzeye ait,
m’nci dereceden polinomun sabit terimi a00 interpole edilecek noktanın yükseklik değeri olur.
aij, katsayıları, m yüzeyin derecesini göstermektedir. Yüzeyin aij katsayılarının hesabı için hata denklemleri,
şeklindedir. Burada xn, yn, n’nci dayanak noktasının koordinatlarını, xo ve yo yüksekliği hesaplanacak olan noktanın koordinatları, Zn n’nci dayanak noktasının yüksekliğini ifade etmektedir. Ağırlık olarak,
wn = ( (xn – xo)2
+ (yn-yo)2 )-k
eşitliği kullanılır. Burada n indisi dayanak noktalarını, o indisi interpole edilecek noktayı göstermektedir.
Hata denklemleri matris gösterimi ileşeklindedir. Burada, xn ve yn koordinatlarını içeren katsayılar matrisi, aij katsayılarını içeren bilinmeyenler vektörüise, dayanak noktalarının Zn yükseklik değerlerini içeren ölçüler vektörüdür. Buradan,olarak elde edilen normal denklemlerden, aij katsayılarını içeren bilinmeyenler vektörü,
eşitliği ile hesaplanır.
5) Sonlu Elemanlarla Jeoid Yüksekliği Belirleme
Son yıllarda özellikle Avrupa’da kullanılan, uygulama olanağı oldukça fazla olan bir yöntemdir. Sonlu elemanlar yöntemi; sürekli bir sistemi problemin karakterine uygun sonlu elemanlara ayırarak daha sonra bu elemanların birleştirilmesi tarzında bir uygulama getirir. Jeoid yüksekliği belirlenecek alan parçalara ayrılarak, bu parçalarda interpolasyon yapılır ve komşu parçaları birleştiren düğüm noktalarında süreklilik sağlanır. Sonlu eleman ağının parçalarına ait düğüm noktaları, jeodezik ağın noktalarından farklı olabilir.
5) Sonlu Elemanlarla Jeoid Yüksekliği Belirleme
Son yıllarda özellikle Avrupa’da kullanılan, uygulama olanağı oldukça fazla olan bir yöntemdir. Sonlu elemanlar yöntemi; sürekli bir sistemi problemin karakterine uygun sonlu elemanlara ayırarak daha sonra bu elemanların birleştirilmesi tarzında bir uygulama getirir. Jeoid yüksekliği belirlenecek alan parçalara ayrılarak, bu parçalarda interpolasyon yapılır ve komşu parçaları birleştiren düğüm noktalarında süreklilik sağlanır. Sonlu eleman ağının parçalarına ait düğüm noktaları, jeodezik ağın noktalarından farklı olabilir.
Kaydol:
Kayıtlar
(
Atom
)